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1. Motivation and Objective

The first objective is to evaluate current two-equation and second order closure

turbulence models using available direct numerical simulations and experiments,

and to identify the models which represent the state of the art in turbulence mod-

eling.

The second objective is to study the near-wall behavior of turbulence, and to

develop reliable models for an engineering calculation of turbulence and transition.

The third objective is to develop a two-scale model for compressible turbulence.

2. Work Accomplished

2.1 Evaluation of two-equation models (N.J. Lang and T.-H. Shih 1)

Twelve ¢wo-equation models including k - e, k - r, k - w and q - w models,

have been evaluated using a common flow solver code (GENMIX) for wall bounded

turbulent flows. For each model, calculations were carried out for two-dimensional,

fully developed channel and flat plate boundary layer flows. These flows are ap-

pealing for model testing because they are simple and self-similar, yet demonstrate

important features of wall bounded turbulent shear flows. In addition, we can

compare these calculations with Direct Numerical Simulations (DNS). A list of the

models which were tested are shown in the table below:

Ch Chien 2 1982 k £

Sh Shih 3 199i k - e

LB Lam and Bremhorst 4 1981 " k- e

NH k - e

NT

LS

JL

MK
YS

WI1

WI2

SAA

Nagano and Hishida 5 1987

Nagano and Tagawa 6 1990

Launder and Sharma 7 1974

Jones and Launder s 1973

Myong and Kasagi_ 1988

Yang and Shih 1° 1991

Co

k-e

k-c

Wilcox 11 1984 k - w

Wilcox 12 1991 k - w

Speziale, Abid and Anderson la 1990 k - r

Coakley 14 1983 q - w

Two dimensional channel flow calculations were made at Re, = 180 and Re,. =

395. These cases were compared with DNS data of Kim et a115. Calculati(_ns for

the two-dimensional flat plate boundary layer flow at Reo = 1410 were compared

with DNS data of Spalart 18. Some flat plate boundary layer comparisons were made
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between the experimental data of Klebanoff 17 at Reo = 7700 and solutions of the

various models. The detailed results are reported in NASA TM 105237, 1991.

An important criterion for two-equation model comparisons is not only how well

the model predicts mean velocity and shear stress, but also the turbulent kinetic en-

ergy and dissipation (or specific dissipation) rate. These predictions should provide

appropriate turbulent velocity and length scales so that the model can be applied

to more complex flows for which a simple mixing length model often fails. Some

researchers maintain that it is not critical whether or not the turbulent kinetic en-

ergy and the turbulent length scale are predicted with great accuracy. However,

one may imagine that a two-equation model making unreasonable turbulent veloc-

ity and length scale predictions would be very questionable when applied to more

general flows. A model which accurately predicts the shear stress and mean veloc-

ity does not imply that it has correctly modeled the turbulent kinetic energy and

length scale. In fact, if the turbulent kinetic energy is incorrect, then the length

scale must also be incorrect to compensate for the error in the turbulent kinetic

energy. For this case, two wrongs are making a right. This warrants some caution

when computing flows for other geometries.

Comments on two-equation models:

It is clear that the JL, LS, WI1 and WI2 models underpredict the near wall

turbulent kinetic energy compared to the other models.

The standard/c - e model has been proven to provide good results in the high

Reynolds number range. It is therefore attractive for a near wall k - e turbulence

model to approach the standard k - E model away from the wall. The LB, LS and

YS models are the only k - e models in this study which possess this'characteristic.

Because boundary layer and channel flows are self-similar, the solutions should

be independent of the initial conditions. However, some of the models (SAA, Co,

and LB) have difficulty when the initial conditions contain large gradients. The Co

Model is particularly dependent on the initial conditions. Even slight perturbations

of the initial conditions will yield noticeably different solutions with this model.

JL, LS, WI1 and WI2 are the only models which do not contain y+. Damping

functions which contain y+ are not desirable because y+ is erroneous near flow

separations and not well defined near complicated geometries. Unfortunately, these

are the same models which poorly predict the near wall turbulent quantities.

The Wilcox models (WI1 and WI2) suffer from a numerically awkward boundary

condition for w at the wall:

6v y+W _ C2----_as --*0

We cannot define w at _+ -- 0. We have tried two ways to approximate w as y+

approaches 0. First, we chose a large number for wwau and, second, we used an
6_, Test cases showed that the solution does not convergeasymptotic w,,,_lt = -g_z.

as ww_u --* o¢ when Zt+ --* 0 for either model. In addition, both Wilcox models

underpredict the turbulent kinetic energy peak value for both boundary layer and

channel flows.
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model the new unknowns Tij, Hij and e_j. At the level of the second order closure,

these new unknowns are usually modeled with algebraic equations in terms of the

second moments and'the mean quantities (with the exception of the trace E_k = 2e,

which is modeled with a transport equation).

In a general turbulent shear flow with moderate inhomogeneity, the turbulent

diffusion terms in the second moment equations are usually smaller than the other

terms. However, the pressure-strain rate and dissipation rate tensors are always

among the leading terms. Therefore, the performance of modeled equations largely

depends on the models of pressure-strain rate tensor and dissipation rate tensor.

In this study, we only concentrate on the models of the pressure-strain rate tensor

and the dissipation rate tensor for the velocity field: H O -eij, which are modeled

as
._(_) 2

l]_j - e_ = II_j)" + n_ -

where 1I!1) (2)..,j, IIij are respectively referred to as the rapid term and the return-to-

9C2 + 2
= 0.2S 0 + 6(bi_Sjk--- + bjkSik - -_SijbklSkt)

22

isotropy term.

Models for the rapid term II_ )

Launder_ Reece and Rodl (LRR): 18

nl))

+
10- zc2

22 (bik_j_ + bjk_ik)

u--_' 1

1

1 U .
fl,_ = _( ,,j - us,,)

where C2 = 0.4, and

(2.2.1)

This model is linear in the Reynolds-stress. It contains only one model constant C2.

This model satisfies the conventional model constraints a4. It is the most general

form at the level of linear dependence on the Reynolds-stress. However, as Lumley 24

pointed out, this model may violate realizability as the turbulence approaches a

two-component state.

Speziale_ Sarkar and Gatski (SSG): 1_

2q 2

= 0.8 - C_*
4 S_ - C_--Pbi_

2q _

+ -_ (bacfljk + b_fla:)

(2.2.2)
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where,

C_* = C_(bijbij) 1/2, P = -uiu]Uij

Ci*=1.8 C_=1.3, C4=1.25, C5=0.4

This model is quasi-linear in the Reynolds-stress, because the coefficients in the

first two terms are not constant, but depend on the invariant of the Reynolds-

stress tensor and the production P. This model contains four model constants

(C_,C_,C4,C5), therefore one may imagine that it will be difficult to correctly

calibrate them. In addition, this model does not satisfy the normalization constraint

which is one of the basic model constraints a4. If we impose this constraint, then

the four coefficients will reduce to only one, and this model will reduce to the LRR

model. Finally, like the LRR model, the SSG model may also violate realizability.

Fu_ Launder and Tselepidakis (FLT): 2°

(2.2.3)

where r = 0.7, bi_ = bikbkj.
This model is cubic in the Reynolds-stress. The final form selected contains

one model constant. This model only satisfies a part of the realizability condition,

corresponding to a two-component state of turbulence. However, when a scalar

field is involved, this model cannot satisfy Schwarz' inequality between velocity and

temperature. This part of realizability is sometimes called joint reaiizability.

Shih and Lumley (SL): 94

nl ' 2
= 0.2Sii + 3as(bo, Sik + bi_Sik - -_61ibktSkl)

2q 2

1 (2 - 7as)(bikf_jk + bp:ftil,)+-5
2

+ 0.2(b_lSjI + bjtSit - 2bkjbuSkt - 3biibktSkl)

+ 0.2(b_lft_l + b_tfht)

(2.2.4)

where,

a5 = (1 + 0.8Fl12), F = 1 + 9bijbjkbki - _bijbii

This model is quasi-quadratic in the Reynolds-stress, because the model coefficient

a5 is a function of the invariants of the Reynolds-stress tensor. We emphasize that
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this model is obtained from a more general form of the expressioh than the FLT,

and satisfies both the two component condition and Schwarz' inequality between

the velocity and scalar fields. In addition, the final form is simpler than the model

of FLT.

Shih and Mansour (SM): 22

i](.1.)
t3

2q 2
= 0.2Sij+ 3aa(bi_S#k + bjkS_k - 25ijbkISkt)

3

+ 1(2 - 7as)(bikf_j_ + bjkf_i_)

2 3bijbklSkl)+ 0.2(b_jSjl+ bflSil - 2bkjbuS_t -

+ 0.2(b  njt+

(2.2.5)

where, a5 = _0{1 + 3.511 - (1 - F)1/4]}.

This model has the same form as the SL model. It was derived in a different way

and contains a different model coefficient a5 which was calibrated from one of the

DNS data (Rogersa°). This model, like the SL model, fully satisfies realizability
conditions.

Models for the return-to-isotropy term H_ )

Rotta: 23

=- Cb,j (2.2.6)
where, C = 3.0.

This model is linear in the Reynolds stress, and contains one model constant. It

was widely used and adopted in the LRR model. We notice that this model will not

allow the turbulence to reach a two-component state, because when any turbulent

component reduces to q2/9, the model Eq.(2.2.6) will force it to grow.

Lumley: 24

II_ ) ---- -$[_blj + '7.(b_j + 2II_ij/3)] (2.2.7)

where, _/= 0 and

F

/_ = 2 + _ exp(-7.77/v_e){72/v/-R-e + 80.1 In[1 + 62.4(-H + 2.3III)]}

This model is quasi-linear in the Reynolds stress, because 7 is set to zero, and

is a function of the invariants of Reynolds stress tensor. This model is simple, and

satisfies realizability.

Sarkar and Speziale (SS): 25

lbL,,j) ] (2.2.s)1]_) = -e[Clbij- 3(61 - 2)(b,2"j -
1
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where C1 = 3.4.

This is a quadratic model in the Reynolds-stress tensor. It satisfies what is

called the weak realizability condition. Like the Rotta model Eq.(2.2.8), this model

will not produce unphysical results. However, it will not allow the turbulence to

approach a two-component state, which could occur in some situations, for example,

in near-wall turbulence.

Haworth and rPope (HP):2_

H_ ) = -e{C1 bq - C2[_ bij + bi2 - b_k(bij + _ij/3)]} (2.2.9)

where C1 = 8.3, C2 = 14.8.

Eq.(2.2.9) is a slow part of the Haworth and Pope's model for the situations

with no mean velocity gradient. This model, like the SS model, will not produce

unphysical results; however, it will also not allow the turbulence to approach a

two-component state.

Choi and Lumlev (CL): 27

If III >_ O,

H_ ) = -e[_bij + 7(b2j + 2II_ij/3)] (2.2.10.1)

where,

p*Fl/2
/_=2+

I+Gx 2

p*F 1/2 G
,./=

I+Gx 2

-- (IZI/2)l/3, T! --- (-IZ/3)l/2

X= _-, G = -X 4+0.8X °
11

p, = exp[_9.29/Rel/2]{( 7.69R- U2

Re = II = -bijbij/2,
9ev'

73.7. [296 16.2(x+l)4]H}__ )- -

III= bijbj_bki/3

If III < O,

H_2)= Eq.(28) (2.2.10.2)

The model coefficients in Eq.(2.2.10.1) were obtained using their comprehen-

sive measurements of turbulence relaxing from axisymmetric expansion. Both

Eq.(2.2.10.1) and Eq.(2.2.10.2) satisfy realiz_.bility; however, Eq.(2.2.10.1) is valid

only for III >_ O, because _ is not defined when III < O.

Craft and Launder (C_L): 28

, 2 _ b_.kSij/3) ] _ 2ebijl'I!2.)= -Cle[2bij + 4C1 (bij
,--tJ

(2.2.11)
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where,

C1 - 3.1(A2A) 1/2, C_ - 1.2

9 (A2 - A3)
A2 -- 4 bijbji, A3 - 8 bijbjkbki, A = I - -_

This model is tensorially quadratic in the Reynolds stress, and satisfies realizability.

Yamamoto and Arakawa (YA): 29

IIl_ ) - -e[atblj + v_2(bi_ - blk6ij/3)] (2.2.12)

where,

_x "" 2 + p F [q (bl_)" + [bi_l'sign(ba_)]

a, = 3 (al - 2)

p=-12, q=-0.65, r=0.4, s=0.45

92
F = 1 - _b_ +9 bakk

The YA model tried to fit situations with both positive and negative b_k. It also

meets the requirement of realizability..

Shih and Mansour (S_:M): 22

II_ ) - -e{(2.0 + CfF_)bii + 7[b_j + (1/3 + 2II)bij + _II6ij]} (2.2.13)

where,

C! = (1/9) exp(-7.77/ vf-f[ee){72/vf-l_-e + 80.1 ln[1 + 62.4(-II + 2.3III)]}

7 = 7o(1 - Fn), Re _- q..-_2
9eV

F = 1 + 91I + 3111

1 1

II = -_bijbij, III = -_bijbjkbki

= 17/20, y= 1/20, "7o =-2

This model matches the data of Comte-Bellot and Corrsin _1 and meets the require-

ment that there will be no return to isotropy in the zero Reynolds number limit.

This model also satisfies realizability.

Concluding remarks ...

We notice that the Reynolds number in all these simulations is low and therefore

may not represent real turbulence in nature. However, the model terms concerned

here are mainly pressure related correlations. The fluctuating pressure is not di-

rectly related to the viscosity, hence the pressure related correlation terms may

not be directly affected by the Reynolds number, especially the rapid term. The

return-to-isotropy term. which includes the deviatoric part of the dissipation rate
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tensor may have some dependence on the Reynolds number'. According to the above

consideration, we think that direct comparisons with low-Reynolds DNS data are le-

gitimate, although we should keep in mind the possible low-Reynolds number effect

"of the DNS data.

We have directly compared five rapid models with fifteen DNS flows: four of

Rogers et al.'s 3° shear flows, eleven of Lee et al.'s 31 irrotational strain flows (axisym-

metric contraction, axisymmetric expansion and plane strain). Comparing the per-

formance of the LRR and SSG models, which are tensorially linear in the Reynolds

stress, we conclude that the SSG model gives very little improvement over the LRR

model. In fact in many cases, it is worse than the LRR model. The reason is not

very clear. However, we notice that the SSG model does not satisfy the normal-

ization condition which may be a cause for its poor behavior. If we impose this

constraint on the SSG model, then it will exactly reduce to the LRR model. In fact

it can be shown that the most general form of the rapid model, which is tensorially

linear in the Reynolds stress, is the LRR model. Therefore, in general, the treat-

ment used in the SSG model would hardly give any improvement over the LRR

model. A natural way to improve the model is to use a more general nonlinear form

and.more general model constraints. A typical example is the SL 21 model. It starts

with the most general form, .using full realizability constraints together with the

other conventional constraints 34. The result is a well behaved model. Indeed, from

the direct comparisons with the DNS data, the SL 21 model and its variation form

of SM 22 model give the best performance in most of the cases. As to the FLT 2°

model, it is also a nonlinear model. It starts with a tensorially cubic dependance on

the Reynolds stress with constant coefficients (in general, these coefficients should

not be restricted to constants). In addition, the two-component conditions of tur-

bulence have been imposed. However, the FLT model ignores Schwarz' inequality.

Its final form contains two undetermined model constants, but one of them is set

to zero. The performance of the FLT model, from the direct comparisons with the

DNS data, is better overall than the linear models, but does not compare with the

performance of the SL and SM models. So from these direct comparisons of the "

rapid models, we conclude that the SL 21 model and its variation form SM 22 are

clearly the best. Having said this we notice that, as Reynolds 33 pointed out, any of

these rapid models will not show any effect of rotation on the invariants (II, III) of

the anisotropy tensor bo.. This is clearly a theoretical deficiency of the current rapid

models. A further investigation is needed to find out how serious this deficiency

will be in practice.

We have directly compared eight return-to-isotropy models with thirty four DNS

flows: four shear flows and thirty relaxation flows from axisymmetric contraction,

axisymmetric expansion and plane strain. As was discussed earlier, all the return-

to-isotropy models are variations of Eq.(2.2.7) derived by Lumley 94. Therefore
the differences in the models are due to the different choices of the model coeffi-

cients. Two linear models are due to Rotta 23 and Lumley 24 (which is quasi-linear

in bij). Lumley's model satisfies realizability, matches the data of Comte-Bellot
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and Corrsin 32 and the limit of the final period of decaying turbulence. It per-

forms perfectly when 111 < 0. It also compares well with the DNS data in which

111 > O. Rotta's model does not compare with the performance of Lumley's model.

In fact, the nonlinear models of SS, YA, HP and C&L also do not compare with the

performance of Lumley's model. Apparently the model coefficients chosen in these

models are not appropriate. The CL 2T model is designed for flows with III > 0 and

is based on their experiments on relaxing turbulence. It does work better than Lum-

ley's model when III > O. Finally, the S&M 22 model is a nonlinear model; it works

just like Lumley's model when III < 0. When Ill > O, it shows an improvement

over Lumley's model according to the DNS data. So from these direct comparisons

of the return-to-isotropy models, we conclude that the combination of Lumley's

model and Choi's model, that is the CL _r model, will give the best performance.

The S&M 22 model seems as good as the CL model according to these comparisons.

Having said this, we notice that the existing return-to-isotropy models do not follow

the relaxation flows from expansion and plane strain very well. Therefore there is

still a need to further investigate and improve the return-to-isotropy models.

For detailed comparison in each flow see the reference 34.

2.3 Near-wall behavior of turbulence

The near-wall behavior of turbulence is re-examined in a way different from that

proposed by Hanjalic and Launder 35 and followers 36,sr,3s,3. It is shown that at a

certain distance from the wall, all energetic large eddies will reduce to Kolmogorov

eddies (the smallest eddies in turbulence). All the important wall parameters, such

as friction velocity, viscous length scale, and mean strain rate at the wail, are

characterized by Kolmogorov microscales. According to this Kolmogorov behavior

of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy,

dissipation rate, etc. at the location where the large eddies become "Kolmogoro¢ ¢

eddies, can be estimated by using both direct numerical simulation (DNS) data

and asymptotic analysis of near-wall turbulence. This information will provide

useful boundary conditions for the turbulent transport equations. As an example,

the concept is incorporated in the standard k-e model which ls then applied to

channel and boundary layer flows. Using appropriate boundary conditions (based

on Kolmogorov behavior of near-wall turbulence), there is no need for any wail-

modification to the k-e equations (including model constants). Results compare

very well with the DNS and experimental data.

Here we only list the results from this study, for the detail see NASA TM 105663.

Model equation and boundary condltlon

The K-e equations for incompressible flows can be in general modeled as:

D---T= + +  TU ,j(tr ,j + - 6
De

D'-_ = [(v + _T)e,i],i + Clfll/TUi,j(Ui,j q" Uj,i)_
fie

_2

(2.3.1)

(2.3.2)
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C1=1.44, C2=1.92

K 2
fl = 1, f2 = 1 - 0.22exp c-Rt2 _ Rt = -- (2.3.3)

36 j' u_

ak=l, ae=l.3

These equations are used only for the flow field outside of the turbulence limit point

yn, where K, 7 is non-zero. Therefore, Eq.(2.3.2) will not have singularity problems

and will not need any near-wall modifications like other K-e models do. 2,s

Eddy viscosity:
K 2

Vr = C_,f_, T (2.3.4)

where,

C_, = 0.09

5 i
f, = [I - exp(atRk + a3R_ + asRk)]2

a1=-1.5.10 -4 az=-l.0*10 -°

K1/2y
Rk =

V

a5 = --5.0 * 10 -10 (2.3.5)

Boundary conditions: at Y,7 = 6v/u,.,

6, 7 = 0.251 u-_-4_ (2.3.6)
v

K, = 0.250u_ (2.3.7)

In practical applications, RoT and R_oo are large numbers, hence y,7/L (L is the

length scale of a flow field) is usually very small. Therefore, as an approximation

we may let yn/L = O, but en and Kn must be given by Eqs.(2.3.6) and (2.3.7)

respectively. These equations have been applied to the calculations of channel and

boundary layer flows.

Comparison of models

To compare the present model with the DNS data and other models (e.g. Jones

and Launder s, and Chien2), we have made calculations on two channel flows 15,4°

and two boundary layer flows 16,17. In the present model, all the model constants

are the same as used in the standard K-e model ag. Therefore the present model

will also be suitable for flows away from the wall. The other two models used here

for comparison do not have this property. Results are shown in figures 1 - 4. In

figure 1 and figure 2, three models are compared with two DNS data for channel

flows: one with R_r - 180, the other with Re, = 395. The profiles of mean velocity,

Reynolds stress, turbulent kinetic energy and its dissipation rate are plotted in these

figures. The present model is significantly better than the other two models. Figure

3 shows the similar comparison for a turbulent boundary with R_o = 1410. The

agreement between the present model and DNS data is excellent. Figure 4 shows
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the results compared with Klebanoff 1_ and other boundary layer experiments. The

skin friction from DNS data 16 is also shown in this figure. The results of present

model are more consistent with the DNS data than the experiments.

It is also worthwhile to emphasize that the present model equations with the

standard model coefficients have the simplest form among all two-equation models.

Hence, we expect that they will have less numerical stiffness in complex turbulent

flows.

2.4 Modeling of transition (Z. Yang and T.-H. Shih)

A model of intermittancy based on the shape factor is added to a two-equation

k-¢ model for prediction of boundary layer transition with a free stream turbulence.

The detailed model and calculations are give by Yang in this year's Research Briefs.

2.5 Modeling of compressible turbulence (W.W. Liou and T.H. Shih)

A two-scale model is proposed based on Hanjalic-Launder's multiple-scale concept

for compressible turbulence, in which a distinct scale created by the compressibility

is modeled separately by considering the effects of pressure-dilatation and dissipa-

tion dilatation on large-scale energy transfer rate. The detailed model is given by

Liou in this year's Research Briefs.

2.6 Direct numerical simulation of compressible flows (A. Hsu

and T.-H. Shih)

In order to have a better understanding of the effect of compressibility on tur-

bulence, especially the effect of the formation of eddy-shocklets on turbulence, a

direct numerical simulation of compressible homogeneous shear turbulent flows is

been performing. The data of all turbulence statistics are very useful for turbulence

modeling. The detailed simulation is given by Hsu in this year's Research Briefs.

3. Future Plans

Development of second order closure models: pay special attention to the effects

of inhomogeneity, non-local property, frame-r0tation, compressibility, near-wall be-

havior in the buffer and log-layers.
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